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ANALYTIC MODELS OF MAGNETIC FIELD EVOLUTION IN
LASER-PRODUCED PLASMA EXPANSIONS

I. INTRODUCTION

A high altitude nuclear explosion (HANE) can significantly perturb the

natural ionosphere and magnetosphere by generating large-scale (tens to
hundreds of kilometers), long-lived (several hours) ionization irregularities

(striations). These irregularities can degrade radar and communication

systems, e.g., through scintillation effects. As such, it is crucial to have

a detailed understanding of the evolution of a HANE in order to achieve a

reliable communications system capability in a nuclear environment. Several

experiments have been conducted1 , both in space (barium cloud releases) and in

the laboratory (laser-pellet explosions), in order to simulate various aspects

of a HANE. Recently, renewed interest in laboratory laser-pellet HANE

simulation experiments has been generated owing to detailed scaling

studies. I 3

An important aspect of the early time (few seconds) evolution of a HANE

is the manner by which the exploding debris plasma couples into the background

air plasma. The nature of this early time coupling could seed or influence

the evolution and structure of late time ionization irregularities. This

coupling can either by collisional (particle-particle interactions) or

collisionless (wave-particle interactions) depending on ambient densities and

temperatures. Collisionless coupling proceeds via plasma microturbulence

which in turn is driven by various plasma instabilities4 . Recently, a set of

turn-on" conditions for collisionless coupling, in the context of the NRL

laser plasma experiment, has been derived5. A key ingredient in determining

whether or not the aforementioned plasma instabilities will be excited is the

structure and magnitude of the local magnetic field in the debris-air coupling

region. If the magnetic field compressions are too small several of the

coupling instabilities will be inoperative. A detailed description of the

early time magnetic field evolution and morphology is also important for

discussing related topics such as electron heat transport, magnetic field

driven interchange instabilities, and ion leakage mechanisms. Analytic models

of the evolution of the magnetic fields can be used to validate HANE numerical

simulations and also be compared with experimental results.

Manuscript approved June 13, 1983.



In this report we study analytic models of the magnetic field evolution

and compression in laser-produced plasma expansions. We treat both one- and

two-dimensional models both with and without an initial background magnetic

field. Many aspects of this problem have already been investigated 6-12*

However these studies have not been discussed or applied to recent NRL laser

pellet experimental observations. The outline of this report is as follows.

In Section II we present and discuss the general model equation for the

evolution of the magnetic field in laser-produced plasma expansions. In

* Section III we study laser plasma expansions without an initial ambient

* background magnetic field and the expected magnitudes of spontaneous self-

generated magnetic fields. The calculated self-generated magnetic fields are

found to be in agreement with preliminary NRL experimental values. In Section

IV we investigate, using both one- and two-dimensional models, laser plasma

expansions into an ambient background magnetic field. The predicted field

* compressions are not inconsistent with those obtained using NRL experimental

observations. We find that one-dimensional models using sharp debris density

profiles give unrealistically large magnetic field compressions. We show that

two dimensional models with diffuse profiles can explain several experimental

observations. Finally in Section V we summarize our results.

II. BASIC EQUATIONS

2
For high 8 (B /81T << NkBT) Plasmas, the equation for the evolution of the

magnetic field B can be writtenl2 -
14

3B 2

at- V x VxB - -V x (V x B)] + S (1)

where

ck B
S VNx VT (2)

e

with nj the resistivity tensor, VL the fluid velocity, c the speed of light, kB
is Boltzmann's constant, and Ne and Te are the electron temperature and

*density, respectively. Radiation pressure effects have been neglected in Eq.

(2) since they can be shown to be small for the laser intensities used in the

current NRL experiment. Equation (1) is simply Faraday's law with the

electric field determined from the force balance equation for the electrons.

2



The generation of a magnetic field requires that the last term in Eq. (1), the

source term S, be nonzero. This requires that VNe and VT be nonparallel.
e e

By defining the dimensionless quantities = t/L, V/Vo, = x/L,

Eq. (1) can be written

-1 -2-- x xB -R V B (3)
_ m

where, for the moment, we have neglected S and defined V and L as a

representative fluid velocity and a magnetic gradient scale length,

respectively. Here Rm defines a magnetic Reynolds number R = 47roLV /c2-i m o

with n=1 1 and I the unit tensor. For Rm > 1, magnetic field convection

(v x 'xB term) dominates over diffusion (v2B term) whereas f or Rm < I the
eff

opposite is true. An effective electron collision frequency v can be

defined by a =N e2/m v where N and m are the electron density and mass,
e Vff =3xi

- 6 Z nAN/ 3 /2  -1

respectively. For v ei e3 x 10 Z Xn A N IT sec , the classical

Coulomb collision frequency, with Z the charge number and gn A the Coulomb

logarithm, we find R = 104 L(cm) where we have taken T = 100 eV andm e
V = 4 x 107 cm/sec as representative NRL laser experimental parameters (B.

0
Ripin, private communication). For L -1 cm, Rm = 104 dissipative effects are

negligible. However, if the effective collision frequency in increased by

other processes, e.g., plasma microturbulence, Rm will decrease and resistive

effects will become more important. For example, for plasma turbulence

* resulting from the magnetized ion-ion instability 4 an effective collision

frequency can be written

eff Pi 2/3 1/3 1/2 1/3 2/3
Vii - 0.15 wi - (Qji + 2/2 l - 2/3)) (4)

where i and j refer to ion species i and J, wHi - wpi( + Wpe2/ )-I/21 pi'

Wpe and electron plasma frequencies, pi is the mass density of species i,p the

total mass density and a j Nj Zj2 m IN Z 2 m . For aluminum (1) streaming

through nitrogen (j), i.e, N 1016 cm , Nj = 1014 cm 3

Zi  10, Z . 3 we find Rm =10 L(cm) -10 for L =1 cm making resistive

effects more important.

3
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ii
III. LASER PLASMA EXPANSION WITHOUT A BACKGROUND MAGNETIC FIELD

As shown in the previous section, spontaneous magnetic fields can be

generated by nonparallel density and temperature gradients. Theie self-
14generated magnetic fields can be quite large near the focal spot region.

Since these spontaneous fields will be carried along with the expanding plasma

they could influence greatly the electron and ion dynamics in the coupling

shell. In addition, large-self fields also imply asymmetric departures from

completely spherical expansion and reduced coupling of the laser engergy into

the target.

According to Eq. (2), the magnitude and direction of the self generated

magnetic field is determined by the geometrical configuration of the laser-

plasma. A laser beam, which is cylindrically symmetric, will produce a plasma

which expands in the direction of the normal to the target and is symmetric

about its expansion direction. From symmetry considerations there can be no

azimuthal density or temperature gradient. During the laser heating of the

target, it is reasonable to assume that the largest contribution to the source

term in Eq. (2) comes from a temperature gradient in the radial direction and

a density gradient in the direction of the target normal due to expansion of

the target plasma. Due to the finite radial extent of the laser beam a radial

* temperature gradient will exist near the edge of the focal spot. This
combination of V T and V N will generate a magnetic field in the azimuthal

e e
direction in the form of a torus1 2. The self-generated field will be

convected radially by the expanding plasma. This scenario has been confirmed

by many previous laser-pellet experiments
14

In order to approximate the self-generated magnetic fields in the NRL

laser HANE experiment we assume a purely radial temperature

gradient 3Te/ar and a density gradient 3N /3z with r denoting distance
e e

perpendicular to the normal to the target plane and z representing distance in

the axial direction perpendicular to the target plane. As a result Eq. (2)

gives

S - (aB/t)self (ckB/eN) (aNe/az) (aT e/ r) (5)

The radial temperature gradient is of the order 3T ear T /r where r is thee e o o
radial extension of the laser heated plasma near the focal spot. We take the

4



density gradient in the z-direction to be given by the debris ion expansion

velocity Vo , i.e, alnNi/8z = alnNe/aZ = [VoTL+ (AVo/V)R]I where TL is the

duration of the laser pulse, AV0 is the thermal debris velocity spread, and R

is the approximate position of the debris density maximum. Taking

(3B/at)self = BselfL/T we have from (5)

T ~
Ss = 107e [I + (AVo/Vo) (R/VL)] G (6)

iBself V r 00 0Voro

0 0

where Te, Vo, ro, FL are expressed in eV, cm/sec, cm, and sec,
respectively. For T =100 eV, V =4 x l07 cm/sec, ro=icm, AV /V° = 0.2,

e -0o 00

R - 0.5 cm, TL = 4 x 10 sec (B. Ripin private communication), Eq. (6)

gives B self = 100 G which is in agreement with experimentally measured values

(S. Kacenjar, private communication).

To find the approximate time dependence of the self-generated magnetic

field, we consider1 2 the fluid variables Net Tel V in Eq. (1) as consisting of

zeroth order contribution plus a first order part, i.e.,
NN +ANT =T +AT, and V - V + AV . The zeroth order parts Neo ,
e= eo + Ne ,Te =Teo+ATe0 o

Teo ,  and Vo  describe a spherically symmetric expansion with the

perturbations A Ne , A Te , and AV representing a small departure from spherical
e e

symmetry giving rise to a source term S vanishes in the spherically symmetric

case. In other words, we can linearize Eq. (1) and solve for 3AB/3t using the

zeroth order motion for V and n in the first two terms on the right hand side

of Eq. (1). The perturbations A N and A T are retained in the sourcee e
term S.

The radius of the expanding laser plasma, rs, is found from 12 the

following

r (t) - R + V (t') dt, (7)

with Ro the initial radius. The velocity of the expanding plasma, in

O . cylindrical coordinates, follows from the continuity equation

V . V (t) (8a)r r s

5
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v zV (t) (8b)
Z r s

The exploding plasma is assumed, in zeroth order, to have a homogeneous

density N (t) in the course of its assumed adiabatic expansion so that

'" T )Y_ (R 3(y-1) (9)

0 0 .

Furthermore, we assume that the expansion decreases the plasma temperature so

that the conductivity scales as
;"i R 9(y-l)/2 '

T 3/2 R
a 0o (i ) "-,F) (10)

0 s has

where o is the initial value and a Coulomb collisional conductivity 1 5 has

been assumed. As a result, Eq. (1)-(2) for the azimuthal component A B of

the self-generated field, asuming cylindrical symmetry e 0) can be written

3B6  3 1 3B B a2B"' (V z B e (V r B o) + D(. r r r 'Ile-6 -)a, t az (Vz ro -r aD

+ S (r, z, t) (11)

ckB N 3T 3N 3T .k B Ne  Te  e  Te )..
Swith s -( ---- wi S' eNe  3r8z 3z.r

e

where, for clarity, we have dropped the A's from B., V, N ,and T and
9(y-1)2e e

* D(t) = D (r /Ro)9 Y -1 ) with D - c2 /4.oa We with to solve Eq. (11) as an -O
0OS0 0 0

• initial value problem with B (t-O) -0 and Vr, Vz given by Eq. (8).

For the expanding plasma cloud, we consider1 2 the following debris

density and temperature profiles which are smooth functions of position.

N = N -A N exp (-r2/r2s(t)) (12a)
e eo e s

Te =T (ATe/r) f dz' exp (-z,2/r2 ) (12b)

From (12a) and (12b) we find

S (r, z, t) -(-2 c ks./e) (A N/Ne) (r/rs) (A Te/r2)

6



I
x exp -(r 2  2 2

+ z )/rs] (13)

Tidman (1975) has solved Eq. (11) using the profiles from (12) and finds, in

scaled time units,

AN AT Vd
B0 (C) = - 8w (2 e2) -  B --N-) (-B-) (--) (1+ t- (14)

e e o

where B °  kB To o/ec, Vd  Do/R = c2 / 4w ao Ro rs = R + V t (constant

expansion velocity V0 ), t V t/R and e = 2.71828 . Using parameters
0 0

typical of the NRL laser experiment (Te = 100 eV, Ne = 1016 cm 3 , Vo

4 x 107 cm/sec), Bg(C) is given by Fig. I for several -ilues

of A N / N and A T / T . Both the magnitudes (several hundred ande e e e
time dependence of B are consistent with preliminary measurements 'fed

0
from the current NRL laser HANE experiment.

IV. LASER PLASMA EXPANSION WITH A BACKGROUND MAGNETIC FIELD

For realistic simulations of a HANE, a background magnetic field must be

introduced into laser-pellet experiments. With a background magnetic field,

magnetic field compression can now take place in addition to spontaneous

magnetic field creation as disucssed in Section III. Magnetic field

compression may be the first stage in the process leading to "pickup" of the

background air ions. It is important to compute the spatial and temporal

history of the magnetic field compression in order to determine where and when

the peak compression is achieved.

A. One-dimensional models

We consider a one-dimensional model of laser-induced plasma expansions

into a background magnetic field. The model consists of a debris plasma

streaming with velocity Vg through a stationary background (air) plasma.

Choosing to work in the debris frame of reference, the ion component of the

expanding debris plasma is stationary with density nD while the background

plasma is assumed uniform with density nB and having flow velocity -Vdx . The

basic configuration is shown in Fig. 2. In the interaction region

-x° 0 x 0 , continuity and quasi neutrality are imposed where x0 = VD 
TL

with TL the duration of the laser pulse. These conditions determine the

density ne - + n.D and flow velocity-V x = -(nB/nB+nD)Vdxof the

debris electrons. Initially, a constant background magnetic field B z is

7



taken to be normal to the flow but excluded from the interaction region as

shown in Fig. 2. We wish to determine the field compression B (x,t) / B
z 0

For the case where collisions are absent, the evolution of B (x,t) was
z

determined by Longmire6 using magnetic flux conservation arguments and is

illustrated in Fig.3. Here B jumps discontinuously from B0 atz
X to (V / Ve ) B > B at X- • The leading edge of the compression in

d e o 0
the interation region is convected with velocity Ve.

Including collisional effects Eq. (1) gives for B (x,t)

Z B

x-- (V' ) - Vx (x) L (x)-B (15)
at 3x x x x c ax z (5

where L (x) = V (x) c2/w 2 (x) V (x) with the effective collision
c pe

frequency v (x) being defined from a (x) = v (x) m / N (x) c2 . It should
e

* be noted that in the derivation of Eq. (1) and (2) the effects of electron

inertia have been neglected. Eq. (15) has been solved for several special
cases.7,8,10

As a simplified model we consider the case where the effective collision

frequency is non zero only in the interation region, -x0 < x < 0 . This

effective collision frequency is defined as the sum of ti classical Coulomb

collision frequency plus an anomalous part due to plasma turbulence. Let

0 x)0

Lc (x) { L -x x O

00 x¢-x

where Lco is constant. As a result the equation governing Bz(x,t)

for -x 4 x 4 0 can be written

3B BB a2 Bz Vl z -Lc V 1  - z 0( 6
at lx co ix 0 (16)

In the following dimensionless variables x - x /Lco , I V It / Lco
and B = Bz/B 0 Eq. (16) can be written ( -x° 0 x 4 0)

3B z B a2Bz z z
at ax ax 0 (17)

where, for clarity, we have dropped the tildes. The initial and boundary

conditions appropriate to Eq. (17) are: BK(x > 0. t - 0) 1 I, 9(-x 08

8

9m



x 0 O, t 0 0) 0 0, i(x - -,t) - 1, B(x0-C,t) + D/ax (x-O-E,t) I .

Eq. (17) together with these initial and boundary conditions can be solved to

yield

Vd-

Bz ( X x < , t) d 1 + (2 w) exp (- x/2) c(x.t)) (18)
e

where

€ (x, t) - (1 - 2 3 / a x) a (x, t)

and

0 1 -2

a (x, t) -f_ d u u (u 2 + I ) exp ( - (u2 + - )t ) sin u x

- i (x - t) exp ( -1 x 1/2) + (w 1/2/2)

d - 3/2 -1/2 -x(2 _ M)x f( d m tt m -m )exp I4+m+- /4

c 1/2 x n(4n+t)11(x-t)exp(-lxl/2) + erfc(-f x t £ n( n l ! nno 2 n(2n-l) n!

1/2 x- k+I /2
+ I/2exp(-x 2 /4t) E x (4n+t)(-2) (2k-)

n-l 2 (2n-l)!!n! k-o x

Fig. 4 shows the evolution of Bz(x,t) as given by Eq. (18). For times

> 1 collisions will smooth the discontiuous jump in 9z given the Longmire

6
analysis

B. Two-dimensional models

In the previous section, a one-dimensional model of an expanding laser

plasma was assumed to have sharp discontinuous debris density profile in order

to simplify analytical calculations. Unrealistically large magnetic field

* compressions were obtained6 by assuming an infinitely steep density profile.

In this section we show the effects of using a diffuse, smooth debris density

profile by making a two-dimensional analysis1 1 of a laser plasma expanding

into a background magnetic field.

9
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We consider a laser plasma expanding into a paraxial magnetic
AA A

field B - B z - B cos 8 er - B sin 8 e8 which is imbedded in a stationary
-. _ 0 0 r 0

background plasma and assume a spherical coordinate system (r, 0, * ) with the

polar angle 8 measured from the z-axiq. Assuming spherical symmetry

( a/a e - a / a a * 0 ) expressions for Br and B from Eq. (1) can be written

r -B 2B 2B

atr V B + D r 2  r2 r rCot 8
at (rano - vr  6 Dr ar =r 7-r (9

-r a2 a r2r B B-r B +D ar -- r-) (20)atF =3 r Vr  0 r r -r7 sin z 0

where we have neglected the self-generated magnetic fields in comparison with

B0 and noted the B is negligible for very early times. On time scales short

compared to the resistive time scale, the diffusive terms in (19) and (20) can

be neglected and we are left with

B (r tan ) -V B (21)

at r 6

a~~e -1 a V B( 2-S0 -

at r -- r B0 (22)

We assume uniform expansion Vr=VOr/ro, quasi-neutrality for the electrons, and

a gaussian debris density profile ND(r,tO)-Noexp (-r2/r2 ) where ro-VoTL

with 'FL the duration of the laser pulse. Under these conditions, Eqs (21) and

(22) can be solved 1 1 analytically for Be, Br for short times 6t such that the

field is only slightly altered:

2 V B 6t (N /N ) exp (- r 2 / r 2)
6B o e 0 B 0s0 r [11+( /N x (- rZfrZ)ro (1+(No  NB) exp /z oz)

o B 0J

2 N
r 2 2

1-- -v exp (-r /r0) (23)

NV

4-1 N 0 r
SBr (r tan 0) + N 6t (24)

r (NB + o o7

where Nb is the background plasma density. The peak magnetic compression is

achieved at r-rm where a / a r (6 B) - 0 giving

10



2 2
(6B/B )max B (V 6 t /2 r)((r r )- 2) (25)

f 1/2
with r (f (NO , NB )) ro , f(x,y) l ln(x/y)-ln g(x,y), g(xy)=

-3
(Xn (x / y) + 2) / (in (x/y) - 2) . For example in NB = 10 cm and

-3
N = 1016 cm , we find r = 1.9 r indicating that peak magnetic field

o m o
% compression occurs ahead of the expanding laser-produced plasma cloud.

Furthermore, the laser plasma cloud density at rm is given by

N (r = r )= 0.28 N A characteristic shell thickness, at early times, can
0 m B 1

be found using 6 Be=' • These analyticallybefon uig 0=~ (6 B8 )mx giving o .2r

obtained features that (1) the maximum field compression occurs in front of

the advancing shell and (2) the maximum field intensity in the compression

region is proportional to the radial displacement of the shell are consistent

with preliminary NRL laser experimental results (S. Kacenjar, private

communication).

Finally, by consideration of the conservation of magnetic flux in two-

dimensions, the field compression scaling as given by Eq. (23) and (24) can be

shown to be reasonable. Consider an annulus of compressed magnetic field with

inner and outer radii of rI and r2 , respectively. Magnetic flux conservation

implies Bor2 2Bc(r2 2-rl
2) where Bc/BO is the magnitude of the field S

compression. This gives B! B r 2 /26 , 6-r 2 - rI • For the NRL laser

experiment R2 = 3cm, 6 = 1.3cm , giving B /B = 1-2 in agreement with2 c o
observations (S. Kacenjar, private communication). In addition, the direct

proportionality between Bc/B0 and r2 is not inconsistent with recent NRL

experimental findings (S. Kacenjar, private communication).

V. SUMMARY

We have attempted to provide, in this preliminary report, simple analytic

models for the magnetic field evolution in laser-induced plasma expansion in

the context of the NRL laser plasma HANE simulation experiment. Both one- and

two-dimensional models have been used for laser plasma expansions with and

without initial background magnetic fields. For the case with no initial

background magnetic field, we find reasonable agreement between analytic two-

dimensional models and preliminary results from the NRL laser plasma

experiment. It is shown that self-generated spontaneous magnetic fields are

small in comparision to proposed ambient background fields. For the case of

11



laser plasma expansion into a background magnetic field, one dimensional

models with sharp, discontinuous profiles give unrealistically large magnetic

field compressions while two-dimensional models incorporating smooth debris

profiles give results are not inconsistent with current NRL experimental

observations. Pr, lictions of magnetic field compressions are supported by

simple conservation arguments.

Future work will include comparison of these analytic models with future

experimental data and the use of these analytic models for validation of large

numerical codes.
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Fig. 1 Self-generated magnetic field B produced by an asymmetic laser-

plasma expansion vs. scaled time t - V 0 /R . Curve a corresponds

to 11N/N - T/T -0.1 while curve b corresponds to AN/N A T/T -0.3.

13



Ne

NOND

II

- -- - NB------ --

-xo 0 x
(a)

Bo

x*(b) "

Fig. 2 Plot of (a) density of debris ions ND, background ions NB, and

electrons Ne  l ND + NB as a function of x and (b) initial (t l 0)

profile of background magnetic field. Here xo Z VDTL with VD the
average debris velocity and T the duration of the laser pulse.
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Fig. 3 Plot of B,(x,t) neglected resistance and inertia (Longmire solution).
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Fig. 4 Plot of B (x,t) with constant resistivity for x < x < 0. The

quantities x, t, B are scaled by L~0  L 0 /Ve and (VD/V)BO,

respectively.
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